n ! matchings , n ! posets ( extended abstract )
نویسندگان
چکیده
We show that there are n! matchings on 2n points without, so called, left (neighbor) nestings. We also define a set of naturally labeled (2 + 2)-free posets, and show that there are n! such posets on n elements. Our work was inspired by Bousquet-Mélou, Claesson, Dukes and Kitaev [J. Combin. Theory Ser. A. 117 (2010) 884–909]. They gave bijections between four classes of combinatorial objects: matchings with no neighbor nestings (due to Stoimenow), unlabeled (2 + 2)-free posets, permutations avoiding a specific pattern, and so called ascent sequences. We believe that certain statistics on our matchings and posets could generalize the work of Bousquet-Mélou et al. and we make a conjecture to that effect. We also identify natural subsets of matchings and posets that are equinumerous to the class of unlabeled (2 + 2)-free posets. We give bijections that show the equivalence of (neighbor) restrictions on nesting arcs with (neighbor) restrictions on crossing arcs. These bijections are thought to be of independent interest. One of the bijections maps via certain upper-triangular integer matrices that have recently been studied by Dukes and Parviainen [Electron. J. Combin. 17 (2010) #R53] Résumé. Nous montrons qu’il y a n! couplages sur 2n points sans emboı̂tement (de voisins) à gauche. Nous définissons aussi un ensemble d’EPO (ensembles partiellement ordonnés) sans motif (2+2) naturellement étiquetés, et montrons qu’il y a n! tels EPO sur n éléments. Notre travail a été inspiré par Bousquet-Mélou, Claesson, Dukes et Kitaev [J. Combin. Theory Ser. A. 117 (2010) 884–909]. Ces auteurs donnent des bijections entre quatre classes d’objets combinatoires: couplages sans emboı̂tement de voisins (dû à Stoimenow), EPO sans motif (2 + 2) non étiquetés, permutations évitant un certain motif, et des objets appelés suites à montées. Nous pensons que certaines statistiques sur nos couplages et nos EPO pourraient généraliser le travail de Bousquet-Mélou et al. et nous proposons une conjecture à ce sujet. Nous identifions aussi des sous-ensembles naturels de couplages et d’EPO qui sont énumérés par la même séquence que la classe des EPO sans motif (2 + 2) non étiquetés. Nous donnons des bijections qui démontrent l’équivalence entre les restrictions sur les emboı̂tements (d’arcs voisins) et les restrictions sur les croisements (d’arcs voisins). Nous pensons que ces bijections présentent un intérêt propre. L’une de ces bijections passe par certaines matrices triangulaires supérieures à coefficients entiers qui ont été récemment étudiées par Dukes et Parviainen [Electron. J. Combin. 17 (2010) #R53]
منابع مشابه
n ! MATCHINGS , n ! POSETS
We show that there are n! matchings on 2n points without socalled left (neighbor) nestings. We also define a set of naturally labeled (2+2)free posets and show that there are n! such posets on n elements. Our work was inspired by Bousquet-Mélou, Claesson, Dukes and Kitaev [J. Combin. Theory Ser. A. 117 (2010) 884–909]. They gave bijections between four classes of combinatorial objects: matching...
متن کاملRelationship between Coefficients of Characteristic Polynomial and Matching Polynomial of Regular Graphs and its Applications
ABSTRACT. Suppose G is a graph, A(G) its adjacency matrix and f(G, x)=x^n+a_(n-1)x^(n-1)+... is the characteristic polynomial of G. The matching polynomial of G is defined as M(G, x) = x^n-m(G,1)x^(n-2) + ... where m(G,k) is the number of k-matchings in G. In this paper, we determine the relationship between 2k-th coefficient of characteristic polynomial, a_(2k), and k-th coefficient of matchin...
متن کاملMatchings Extend to Perfect Matchings on Hypercube Networks
In this work, we investigate in the problem of perfect matchings with prescribed matchings in the n-dimensional hypercube network Qn. We obtain the following contributions: For any arbitrary matching with at most n − 1 edges, it can be extended to a perfect matching of Qn for n ≥ 1. Furthermore, for any arbitrary non-forbidden matching with n edges, it also can be extended to a perfect matching...
متن کاملStable Roommates Matchings, Mirror Posets, Median Graphs, and the Local/Global Median Phenomenon in Stable Matchings
For stable marriage (SM) and solvable stable roommates (SR) instances, it is known that there are stable matchings that assign each participant to his or her (lower/upper) median stable partner. Moreover, for SM instances, a stable matching has this property if and only if it is a median of the distributive lattice formed by the instance’s stable matchings. In this paper, we show that the above...
متن کاملMatchings, cutsets, and chain partitions in graded posets
New properties that involve matchings, cutsets, or skipless chain partitions in graded posets are introduced and compared to familiar Sperner and chain partition properties. Related work is surveyed. We determine all possible combinations of these properties, with the exception of a long-standing open conjecture about L Y M posets, and provide a list of examples realizing these combinations.
متن کامل